Menu
Close

GLIoma Molecular Marker Enrichment & Long-Read Sequencing (GLIMMERS)

Nanopore technology allows mutation and methylation detection directly from native DNA, without the need for the bisulfite treatment and PCR. Combining a CRISPR-Cas9 system to nanopore technology, we simultaneously assessed the mutations and methylation status of the major glioma molecular markers, IDH1, IDH2, and MGMT promoter. We applied this method on well-characterized DNA standards, 4 cell lines and 4 brain tumor samples. In this presentation, we will show the results of mutation and methylation status assessment from both nanopore and conventional methods. These efforts are in line with improving precision medicine and can be applied to other cancer types.

Back
Thidathip Wongsurawat

Thidathip Wongsurawat, University of Arkansas for Medical Sciences, USA

Abstract

Nanopore technology allows mutation and methylation detection directly from native DNA, without the need for the bisulfite treatment and PCR. Combining a CRISPR-Cas9 system to nanopore technology, we simultaneously assessed the mutations and methylation status of the major glioma molecular markers, IDH1, IDH2, and MGMT promoter. We applied this method on well-characterized DNA standards, 4 cell lines and 4 brain tumor samples. In this presentation, we will show the results of mutation and methylation status assessment from both nanopore and conventional methods. These efforts are in line with improving precision medicine and can be applied to other cancer types.

Bio

Dr. Thidathip Wongsurawat (Tip) is a faculty member in the Department of Biomedical Informatics at the University of Arkansas for Medical Science (UAMS). Her research interest focuses on utilizing sequencing technology in cancer research and diagnosis with the primary goal of translating genomic data and novel ideas into clinical reality. Currently, she works closely with multi-disciplinary team of scientists and clinicians on a nanopore-based project to develop a cutting-edge method for cancer diagnosis and treatment decisions.